Using Intuitive Geometry - Exercise 6

Due Date: October 6th - Instructor: Felix Breuer

Exercises

1) Let $v_1,\ldots,v_n\in\mathbb{R}$ be real numbers. $m\in\mathbb{R}$ is a *median* of v_1,\ldots,v_n if

$$\#\{i|v_i\leq m\}\geq rac{n}{2}\leq \#\{i|v_i\geq m\}.$$

Your task is to show that the set of medians is the set of solutions to the following optimization problem:

$$\min_{m \in \mathbb{R}} \sum_{i=1}^n \lvert v_i - m
vert.$$

Intuitively, this means that the median and the median hyperplanes are the "best fit" to the set of points v_1, \ldots, v_n , when minimizing the sum of distances. (As opposed to the sum of squared distances.)

2) The above optimization problem is not a priori a linear programming problem as the target function contains absolute values - and the absolute value is not a linear function. In this task, you are supposed to show that optimization problems that contain absolute values in the target function can be rewritten to obtain equivalent *linear* optimization problems. To this end, proceed as follows.

Consider the optimization problem

$$m = \min\{\sum_{i=1}^k f_i(x) + \sum_{i=1}^l |g_i(x)| \, | \, Ax \leq b \}$$

where the f_i and g_i are *linear* functions. Assume that this problem has a feasible solution and that it is finite, i.e., assume that m is finite.

1. Formulate an optimization problem of the form

$$\hat{m} = \min\{\sum_{i=1}^{\hat{k}} \hat{f}_i(x) + \sum_{i=1}^{l-1} |\hat{g}_i(x)| \, | \, \hat{A}x \leq \hat{b} \}$$

with linear \hat{f}_i and \hat{g}_i such that the two problems have the same optimal value $\hat{m}=m$ and the formulation of \hat{m} "uses one absolute value less", i.e., l-1 < l. Note that the number \hat{k} of linear functionals \hat{f}_i may increase by more than one!

- number \hat{k} of linear functionals \hat{f}_i may increase by more than one!

 2. *Prove* your claim! That is, show that the problem you came up with does indeed have the same value as m.
- 3. Argue by induction that there exists a *linear* program with the same optimal value as m.
- 3) Let K be any simplicial complex such that all maximal faces of K have dimension d. Let

 $\operatorname{sd}(K)$ be its barycentric subdivision. Show that there exists a labeling of the vertices of $\operatorname{sd}(K)$ with $1,\ldots,d+1$ such that every d-dimensional simplex $\sigma\in\operatorname{sd}(K)$ has the property that all labels appear on the vertices of σ .

More formally: Construct a function $p:\operatorname{sd}(K) \to \{1,\ldots,d+1\}$ such that for every d-dimensional simplex $\sigma \in K$, $p(V(\sigma)) = \{1,\ldots,d+1\}$ where $V(\sigma)$ denotes the vertex set of σ .

Hint: Try to solve the problem for the case $K=\Delta^d$ first and then argue that this implies the claim for general K. (Another hint: Draw a picture!)

4) The Theorem of Poincaré-Miranda states the following:

Let $f:[-1,1]^d o\mathbb{R}^d$ be a continuous function such that for every face σ of the cube $[-1,1]^d$ and for every $a\in\{\pm e_1,\ldots,\pm e_d\}$,

$$\sigma \subset H_{a,0}^+ \Rightarrow \mathit{f}(\sigma) \subset H_{a,0}^+.$$

Then there exists an $x \in [-1,1]^d$ that is a zero of f, i.e., f(x) = 0.

Show that the Theorem of Poincaré-Miranda implies the following version of Brouwer's Fixed Point Theorem:

Let $f:[-1,1]^d o [-1,1]^d$ be a continuous function. Then there exists an $x\in [-1,1]^d$ that is a fixed point of f, i.e., f(x)=x.

Optional Problems

- **A)** Show the converse of 4), i.e., prove that Brouwer's Fixed Point Theorem implies the Theorem of Poincaré-Miranda.
- B) Let $v_1,\ldots,v_n\in\mathbb{R}$ be real numbers and $lpha\in[0,1]$. $q\in\mathbb{R}$ is an lpha-quantile of v_1,\ldots,v_n if

$$\#\{i|v_i\leq q\}\geq lpha\cdot n ext{ and } (1-lpha)\cdot n\leq \#\{i|v_i\geq m\}.$$

Formulate an optimization problem whose set of optimal solutions is the set of α -quantiles of v_1, \ldots, v_n .

Questions?

eMail: felix@fbreuer.de - web: http://www.felixbreuer.net