Using Intuitive Geometry - Exercise 2

Due Date: September 8th - Instructor: Felix Breuer

Preliminaries

Posets. A *poset* is a pair (S, \leq) of a set *S* and a binary relation \leq with the following properties:

- reflexivity: $x \leq x$ for all $x \in S$.
- transitivity: $x \leq y$ and $y \leq z$ implies $x \leq z$ for all $x, y, z \in S$.
- antisymmetry: $x \leq y$ and $y \leq x$ implies x = y for all $x, y \in S$.

Let (S, \leq) be a poset. A *minimal element* is an element $x \in S$ such that $x \leq y$ for all $y \in S$. A *maximal element* is an element $x \in S$ such that $y \leq x$ for all $y \in S$. An *upper bound* of $x, y \in S$ is an element $z \in S$ such that $x, y \leq z$. An *lower bound* of $x, y \in S$ is an element $z \in S$ such that $z \leq x, y$. A *unique least upper bound* of $x, y \in S$ is an upper bound $z \in S$ of x and y with the additional property that for every upper bound $z' \in S$ of x and y we have $z \leq z'$. A *unique greatest lower bound* of $x, y \in S$ is a lower bound $z \in S$ of x and y with the additional property that for every lower bound $z' \in S$ of x and y with the additional property that for every lower bound $z' \in S$ of x and y we have $z' \leq z$.

Polytopes. A V-polytope is a set $P \subset \mathbb{R}^d$ of the form

$$P = \operatorname{conv}(v_1,\ldots,v_k) = \{\sum_{i=1}^n \lambda_i v_i | \sum_{i=1}^n \lambda_i = 1, \lambda_i \ge 0 \}.$$

An H-polytope is a *bounded* (!) set $P \subset \mathbb{R}^d$ of the form

$$P = \{x \in \mathbb{R}^d | Ax \leq b\}$$

for some matrix A and vector b. The fundamental theorem of polytope theory states that

every H-polytope is a V-polytope and every V-polytope is an H-polytope.

The *Minkowski sum* of two sets $A, B \subset \mathbb{R}^d$ is

$$A+B=\{a+b|a\in A,b\in B\}.$$

Exercises

1) Let (S, \leq) be a poset that has a minimal element 0 and a maximal element 1 and the property that every $x, y \in S$ have a unique greatest lower bound in *S*. Show that every $x, y \in S$ have a unique least upper bound.

2) Using the fundamental theorem of polytope theory, show that the following statements:

- The intersection of a polytope with an affine subspace is a polytope.
- The intersection of a polytope with a polytope is a polytope.

- The Minkowski sum of two polytopes is a polytope.
- If $f : \mathbb{R}^d \to \mathbb{R}^m$ is a linear map and *P* is a polytope, then f(P) is a polytope.

Note that some of these are significantly easier to prove with the H-description and some are easiert to prove with the V-description of a polytope.

3) What are the vertices of the polytope given by the following inequality description?

Optional Problems

A) We have represented the vertices of the permutahedron on the one hand as permutations of the numbers $1, \ldots, n$, on the other hand as linear orderings of the variables x_1, \ldots, x_n , so that, for example the vertex (1,3,4,2,5) corresponds to $x_1|x_4|x_2|x_3|x_5$. (Note that 13425 is the inverse of the permutation 14235.) Show that, in the second representation, two vertices are adjacent (lie on a common edge) if and only if they differ by an adjacent transposition (swapping two variables that are next to each other).

Questions?

eMail: felix@fbreuer.de - web: http://www.felixbreuer.net/