Using Intuitive Geometry - Exercise 1

Due Date: September 1st - Instructor: Felix Breuer

Preliminaries

A *lattice transformation* $f : \mathbb{R}^d \to \mathbb{R}^d$ is an affine isomorphism that, when restricted to the integer lattice \mathbb{Z}^d , induces a bijection (i.e., a 1-to-1 and onto map) on the integer lattice $f|_{\mathbb{Z}^d} : \mathbb{Z}^d \to \mathbb{Z}^d$.

A *lattice basis* is a set $a_1, \ldots, a_d \in \mathbb{Z}^d$ of linearly independent integer vectors such that for every $z \in \mathbb{Z}^d$ there exist *integers* $\lambda_1, \ldots, \lambda_d \in \mathbb{Z}$ such that

$$\sum_{i=1}^d \lambda_i a_i = z.$$

The fundamental parallelepiped Π_{a_1,\ldots,a_d} spanned by these vectors is the set

$$\Pi_{a_1,\ldots,a_d} = \{x\in \mathbb{R}^d \, | \, x = \sum_{k=1}^d \lambda_i a_i ext{ for } 0 \leq \lambda_i < 1 \}.$$

In these exercises you may use the following:

Theorem. Let $a_1, \ldots, a_d \in \mathbb{Z}^d$ be linearly independent integer vectors. Let $A = (a_1 \ldots a_d)$ be the matrix with the a_i as columns. Then

$$L(\Pi_{a_1,\ldots,a_d})=\mathrm{Volume}(\Pi_{a_1,\ldots,a_d})=|\det(A)|.$$

Exercises

1) Show that for an affine isomorphism $f : \mathbb{R}^d \to \mathbb{R}^d$ of the form f(x) = Ax + b the following are equivalent:

- *f* is a lattice transformation.
- L(X) = L(f(X)) for every set $X \subset \mathbb{R}^d$.
- *A* is an integer matrix, *b* an integer vector and $|\det(A)| = 1$.

2) Show that for linearly independent integer vectors $a_1, \ldots, a_d \in \mathbb{Z}^d$ the following are equivalent:

- a_1, \ldots, a_d form a lattice basis.
- There exists a lattice transformation f such that $f(a_i) = e_i$ for i = 1, ..., d where e_i are the standard unit vectors.
- The fundamental parallelepiped Π_{a_1,\ldots,a_d} contains exactly one lattice point $z \in \mathbb{Z}^d$.

Optional Problems

A) In dimension 2, show the theorem about the fundamental parallelepiped stated in the preliminaries (i.e., $L(\Pi_{a,b}) = \text{Volume}(\Pi_{a,b})$) without using limit arguments.

B) Let gcd(a, b) = 1. Is there a simple geometric argument that shows

$$\sum_{k=0}^{b-1}(ka ext{ mod } b)\cdot k + \sum_{k=0}^{a-1}(kb ext{ mod } a)\cdot k = ext{ something simple}?$$

This is asking for an intuitive geometric proof of Dedekind reciprocity.

C) If a, b, c are pairwise relatively prime, we have shown

$$\sum_{k=0}^{c-1} \lfloor \frac{ka}{c} \rfloor \cdot \lfloor \frac{kb}{c} \rfloor + \sum_{k=0}^{b-1} \lfloor \frac{ka}{b} \rfloor \cdot \lfloor \frac{kc}{b} \rfloor + \sum_{k=0}^{a-1} \lfloor \frac{kc}{a} \rfloor \cdot \lfloor \frac{kb}{a} \rfloor = (a-1)(b-1)(c-1).$$

Does this imply a reciprocity law for Dedekind sums or sums of the form

$$\sum_{k=0}^{c} \{\frac{ka}{c}\} \cdot \{\frac{kb}{c}\}?$$

Questions?

eMail: felix@fbreuer.de - web: http://www.felixbreuer.net/